FACTORISE
1. 27-125a³-135a+225a²
2. 64a³-27b³-144a²b+108 ab²2
❌DON'T SPAM ❌
CLASS 9 MATHS CHAPTER 2 POLYNOMIALS
Answers
Step-by-step explanation:
Given :-
1. 27-125a^3-135a+225a^2
2. 64a^3-27b^3-144a^2b+108 ab^2
To find:-
Factorise the following expressions ?
Solution:-
1)
Given expression is 27-125a^3-135a+225a^2
It can be written as
=>(3)^3-5^3a^3-3(9)(5a)+3(3)(25)a^2
=> (3)^3-5^3a^3-3(3^2)(5a)+3(3)(5a)^2
=> (3)^3-3(3^2)(5a)+3(3)(5a)^2-(5a)^3
This is in the form of a^3-3a^2b+3ab^2-b^3
Where a = 3 and b = 5a
We know that
(a-b)^3 = a^3-3a^2b+3ab^2-b^3
=> (3)^3-3(3^2)(5a)+3(3)(5a)^2-(5a)^3
=> (3-5a)^3
=> (3-5a)(3-5a)(3-5a)
27-125a^3-135a+225a^2
= (3-5a)(3-5a)(3-5a)
----------------------------------------------------------------
2)
Given expression is 64a^3-27b^3-144a^2b+108 ab^2
It can be written as
=>4^3a^3-3^3b^3-3(16a^2)(3b)+3(4a)(9b^2)
=>( 4a)^3-(3b)^3-3(4a)^2(3b)+3(4a)(3b)^2
=> ( 4a)^3-3(4a)^2(3b)+3(4a)(3b)^2-(3b)^3
This is in the form of a^3-3a^2b+3ab^2-b^3
Where a = 4a and b = 3b
We know that
(a-b)^3 = a^3-3a^2b+3ab^2-b^3
=>( 4a)^3-3(4a)^2(3b)+3(4a)(3b)^2-(3b)^3
=> (4a-3b)^3
=> (4a-3b)(4a-3b)(4a-3b)
64a^3-27b^3-144a^2b+108 ab^2 = (4a-3b)(4a-3b)(4a-3b)
----------------------------------------------------------------
Used Identity:-
- (a-b)^3 = a^3-3a^2b+3ab^2-b^3
Answer:
27-125a³-135a+225a
= (3-5a)³
= (3-5a)(3-5a)(3-5a)
Given 27-125a³-135a+225a
=3³+(-5a)³+3×3²×(-5a)+3×3×(-5a)²
= [3+(-5a)]³
By an algebraic identity:
=(3-5a)³
Therefore,
27-125a³-135a+225a = (3-5a)³
Step-by-step explanation:
Plz mark as brainliest..!