Math, asked by latha357cutie, 4 months ago

factorise: 1 + 2a + a​

Answers

Answered by igibrahim07
0

Answer

Answerx

Answerx 2

Answerx 2 −1−2a−a

Answerx 2 −1−2a−a 2

Answerx 2 −1−2a−a 2

Answerx 2 −1−2a−a 2 ⇒ x

Answerx 2 −1−2a−a 2 ⇒ x 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1)

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a)

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a)

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b)

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)⇒ (x+1+a)(x−1−a)

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)⇒ (x+1+a)(x−1−a)∴ x

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)⇒ (x+1+a)(x−1−a)∴ x 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)⇒ (x+1+a)(x−1−a)∴ x 2 −1−2a−a

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)⇒ (x+1+a)(x−1−a)∴ x 2 −1−2a−a 2

Answerx 2 −1−2a−a 2 ⇒ x 2 −(1+2a+a 2 )⇒ x 2 −[(1) 2 +2×1×a+(a) 2 ]⇒ x 2 −(1+a) 2 [ Since, a 2 +2ab+b 2 =(a+b) 2 ]We know, a 2 −b 2 =(a+b)(a−b)⇒ (x+1+a)(x−1−a)∴ x 2 −1−2a−a 2 =(x+1+a)(x−1−a)

Answered by RawkneeDada
0

Answer:

Here is your answer

.

.

.

.

.

.

.

.

.

Mark me as Brainliest

Similar questions