Factorise : 1 - 2ab - (a²+ b²)
Answers
Answer:
Factorization of the expression 1-2 a b-\left(a^{2}+b^{2}\right)1−2ab−(a 2 +b 2 ) is \bold{(1+a+b) (1-a-b)}(1+a+b)(1−a−b)
Given:
1-2 a b-\left(a^{2}+b^{2}\right)
1−2ab−(a 2 +b 2 )
To Find:
Factorization of 1-2 a b-\left(a^{2}+b^{2}\right)1−2ab−(a
2
+b
2
)
Solution:
The given expression is,
1-2 a b-\left(a^{2}+b^{2}\right)1−2ab−(a
2
+b
2
)
Now, the above expression can be written as
1-\left(a^{2}+b^{2}+2 a b\right)1−(a
2
+b
2
+2ab)
The above expression can be written as,
=1-(a+b)^{2}\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]=1−(a+b)
2
[∵(a+b)
2
=a
2
+b
2
+2ab]
Now, we get
=(1)^{2}-(a+b)^{2}\left[\text { Since, } 1=1^{2}\right]=(1)
2
−(a+b)
2
[ Since, 1=1
2
]
Now, on expanding the above equation, the new expression is,
=[1+(a+b)][1-(a+b)]=[1+(a+b)][1−(a+b)]
Now, the equation becomes,
=(1+a+b)(1-a-b)=(1+a+b)(1−a−b)
Answer:
Identity (a²+b²) = a² + b² + 2ab
Step-by-step explanation:
- 1 - 2ab - (a² + b²)
- = 1 - 2ab - [(a)² + (b)² + 2ab ]
- = 1 - 2ab - a² - b² - 2ab
- = 1 - a² - b² - 4ab
Hope it helps you..