Math, asked by acharinamrata24, 1 year ago

factorise
1) 81n⁴-p⁴. Answer will be (3n+p) (3n-p) (9n²+p²)​

Answers

Answered by charliejaguars2002
6

Answer:

Yes your answer is correct.

\Large\boxed{\longrightarrow\mathsf{(9n^2+p^2)(3n+p)(3n-p)}}

Step-by-step explanation:

GIVEN:

81n⁴-p⁴

TO FIND:

The factorise of 81n⁴-p⁴.

TO SOLVE:

With exponent rules and difference of two squares.

SOLUTIONS:

First, rewrite the equation problem.

\displaystyle \mathsf{9^2=9\times9=81}

\displaystyle \mathsf{9^2n^4-p^4}

Use exponent rule.

\Large\boxed{\mathsf{EXPONENT \quad  RULES}}

\displaystyle \mathsf{A^B^C=(A^B)^C}

\displaystyle \mathsf{(P^2)^2=P^4}

\displaystyle \mathsf{9^2n^4-\left(p^2\right)^2}}}

\displaystyle \mathsf{(n^2)^2=n^4}

\displaystyle \mathsf{9^2\left(n^2\right)^2-\left(p^2\right)^2}}}}}

Exponent rules.

\displaystyle \mathsf{A^MB^M=(AB)^M}

\displaystyle \mathsf{9^2\left(n^2\right)^2=\left(9n^2\right)^2}

\displaystyle \mathsf{\left(9n^2\right)^2-\left(p^2\right)^2}}}

Use difference from between the two squares.

\Large\boxed{\mathsf{TWO \quad SQUARES \quad FORMULA}}

\displaystyle \mathsf{X^2-Y^2=(X+Y)(X-Y)}

\displaystyle \mathsf{\left(9n^2\right)^2-\left(p^2\right)^2=\left(9n^2+p^2\right)\left(9n^2-p^2\right)}}

\displaystyle \mathsf{\left(9n^2+p^2\right)\left(9n^2-p^2\right)}

Factors of 9n²-p².

Solve.

\displaystyle \mathsf{9n^2-p^2=\boxed{\mathsf{(3n+p)(3n-p)}}}}

\Large\boxed{\longrightarrow\mathsf{(9n^2+p^2)(3n+p)(3n-p)}}}}

Hence, the final answer is (9n²+p²)(3n+p)(3n-p).

Similar questions