Math, asked by shawalrampatel, 1 month ago

Factorise [1+b3+8c3 - 6Ьc step by step verification​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:1 +  {b}^{3} +  {8c}^{3} - 6bc

can be rewritten as

\rm \:  =  \: {(1)}^{3}  +  {(b)}^{3} +  {(2c)}^{3} - 3 \times 1 \times b \times 2c

We know,

  \red{\sf \:  {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz \:  = } \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \\  \red{(x + y + z)( {x}^{2} +  {y}^{2} +  {z}^{2} - xy - yz - zx)}

So, Here,

 \red{\rm :\longmapsto\:x = 1}

 \red{\rm :\longmapsto\:y = b}

 \red{\rm :\longmapsto\:z = 2c}

So, on substituting the values in above identity, we get

 \rm  = (1 + b + 2c)( {1}^{2} + {b}^{2} +  {(2c)}^{2} - 1 \times b - b \times 2c - 2c \times 1)

 \rm  = (1 + b + 2c)( 1 + {b}^{2} +  {4c}^{2} -  b -  2bc - 2c)

More Identities to know :-

\boxed{ \tt{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \: }}

\boxed{ \tt{ \:  {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2} -  2xy \: }}

\boxed{ \tt{ \:  {(x  -  y)}^{3}  =  {x}^{3} -  {y}^{3} -  3xy (x - y)\: }}

\boxed{ \tt{ \:  {(x  +  y)}^{3}  =  {x}^{3} +  {y}^{3} + 3xy (x  +  y)\: }}

\boxed{ \tt{ \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2}) \: }}

\boxed{ \tt{ \:  {x}^{3} -  {y}^{3} = (x  -  y)( {x}^{2}  +  xy +  {y}^{2}) \: }}

\boxed{ \tt{ \:  {(x + y + z)}^{2} =  {x}^{2} +  {y}^{2} +  {z}^{2} + 2(xy + yz + zx) \: }}

\boxed{ \tt{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }}

Similar questions