Factorise :
( 1 ) ( x + 1 ) ³ - ( x - 1 )³
( 2 ) ( x + 1 ) ³ + ( x - 1 )³
Need Quality answer
Answers
Answer:
Given : x(x+y)
3
−3x
2
y(x+y)
Taking x(x+y) as common in the given question,
we get, x(x+y)[(x+y)
2
−3xy]
We know that, (a+b)
2
=a
2
+b
2
+2ab
x(x+y)
3
−3x
2
y(x+y)=x(x+y)(x
2
+y
2
+2xy−3xy)
So we get,
x(x+y)
3
−3x
2
y(x+y)=x(x+y)(x
2
+y
2
−xy)
Step-by-step explanation:
hope it's helpful to you
please make me brainlist.
→ Hey Mate,
→ Given Question:-
→ Factorise :
→ ( 1 ) ( x + 1 ) ³ - ( x - 1 )³
→ ( 2 ) ( x + 1 ) ³ + ( x - 1 )³
→ Solution:-
→ (1) ( x + 1 )³ - ( x - 1 )³
→ = { ( x + 1 ) - ( x - 1 ) } { ( x + 1 )² + ( x + 1) ( x-1 ) + (x - 1)²}
→ = ( x + 1 - x + 1 ) {( x² + 2x + 1 ) + (x² - 1) + (x²-2x + 1)}
→ = 2 ( x² + 2x + 1 + x² - 1 + x² -2x + 1)
→ = 2 ( 3x² + 1 )
→ (2) ( x + 1 ) ³ + ( x - 1 )³
→ = { ( x + 1 ) + ( x - 1) } { (x+1)²- (x+1) (x-1) + (x-1)²}
→ = (x + 1 + x-1) {( x² + 2x + 1 ) - (x²-1)+ (x²-2x+1)
→ = 2x (x² + 2x + 1 -x² + 1+x² -2x + 1)
→ = 2x (x² + 3)
---------------------------------------------thank you -------------------------------