Factorise 12 (4x-1/4x)^-5 (4x-1/4x)-2
Answers
Answer:
Step-by-step explanation:
Input:
(12 (4 x - 1/4 x))/(4 x - 1/4 x)^5 - 2
Result:
1024/(16875 x^4) - 2
Plots:
Plots
Plots
Alternate forms:
-(2 (16875 x^4 - 512))/(16875 x^4)
(2 (512 - 16875 x^4))/(16875 x^4)
Real roots:
x = -(4 2^(1/4))/(5 3^(3/4))
x = (4 2^(1/4))/(5 3^(3/4))
Complex roots:
x = -(4 i 2^(1/4))/(5 3^(3/4))
x = (4 i 2^(1/4))/(5 3^(3/4))
Roots in the complex plane:
Roots in the complex plane
Properties as a real function:
Domain
{x element R : x!=0}
Range
{y element R : y>-2}
Parity
even
Derivative:
d/dx((12 (4 x - x/4))/(4 x - x/4)^5 - 2) = -4096/(16875 x^5)
Indefinite integral:
integral(-2 + 1024/(16875 x^4)) dx = -1024/(50625 x^3) - 2 x + constant
Limit:
lim_(x-> ± ∞) (-2 + 1024/(16875 x^4)) = -2
Series representations:
-2 + 1024/(16875 x^4) = -32726/16875 + sum_(n=1)^∞ ((-1 + x)^n 512 ((-1)^n (1 + n) (2 + n) (3 + n)))/50625
-2 + 1024/(16875 x^4) = sum_(n=-∞)^∞ ( piecewise | -2 | n = 0
1024/16875 | n = -4) x^n
Answer:
the answer is (45x+8) • (15x-1)