Math, asked by parthsinghmahra, 8 months ago

Factorise: 12(y^2+7y)^2-8(y^2+7y)(2y-1)-15(2y-1)^2 Please tell the answer in detail with the name of the property listed

Answers

Answered by Anonymous
5

Step-by-step explanation:

I hope this help you mark me brainliest

Attachments:
Answered by mysticd
3

 Given \: 12(y^2+7y)^2-8(y^2+7y)(2y-1)-15(2y-1)^2

 Let \: a = (y^{2} + 7y) , \:and \: b = (2y-1)

\* Rewrite the Expression, we get *\

 = 12a^{2} - 8ab- 15b^{2}

\* Splitting the middle term,we get *\

 = 12a^{2} + 18ab - 10ab - 15b^{2} \\= 6a( 2a + 3b) - 5b(2a + 3b) \\= (2a + 3b)( 6a - 5b ) \\= [ 2(y^{2}+7y) + 3(2y-1) ] [ 6(y^{2}+7y) - 5(2y-1) ] \\= (2y^{2} + 14y +6y - 3) (6y^{2}+42y-10y+5) \\= (2y^{2}+20y-3)(6y^{2}+32y+5)

Therefore.,

 \red{ Factors \:of \: 12(y^2+7y)^2-8(y^2+7y)(2y-1)-15(2y-1)^2}\\\green{=(2y^{2}+20y-3)(6y^{2}+32y+5)}

•••♪

Similar questions