Math, asked by hraj47448, 9 months ago

factorise 125a³+b³+64c³-60abc​

Answers

Answered by Anonymous
47

GIVEn

factorise 125a³+b³+64c³-60abc

SOLUTIOn

→ 125a³ + b³ + 64c³ - 60abc

→ (5a)³ + (b)³ + (4c)³ - 3 × 5a × b × 4c

Applying identity

+ + - 3abc

= (a + b + c)( + + - ab - bc - ca)

→ (5a + b + 4c)[(5a)² + (b)² + (4c)² - 5a*b - b*4c - 5a*4c]

→ (5a + b + 4c)[25a² + b² + 16c² - 5ab - 4cb - 20ac]

SOMe IDENTITIEs

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
Answered by MяƖиνιѕιвʟє
66

Fᴀᴄᴛᴏʀɪsᴇ :-

125a³ + + 64c³ - 60abc

(5a) ³ + (b) ³ + (4c) ³ - 3 × 5a × b × 4c

Now,

We know that,

+ + c³ - 3abc = (a + b + c) ( + + -ab - ac - bc)

So,

By applying this identity on the above, we get,

125a³ + b³ + 64c³ - 60abc = ( 5a + b + 4c) {(5a) ² + (b) ² + (4c) ² -(5a × b) - (5a× 4c) -(b × 4c)

125a³ + b³ + 64c³ - 60abc = ( 5a + b + 4c) (25a² + b² + 16c² - 5ab - 20ac - 4bc)

ᴹᵒʳᵉ ᴵᵈᵉⁿᵗⁱᵗⁱᵉˢ :-

  • (a³ + b³) = (a + b) (a² + b² - ab)

  • (a³ - b³) = ( a - b) ( a² + b² + ab)

  • If ( a + b + c) = 0 then, a³ + b³ + c³ = 3abc
Similar questions