Math, asked by Suhani3577, 3 months ago

Factorise 12a^b+15ab^2​

Answers

Answered by SweetCharm
32

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\underline{\sf{\red{Required\:Answer:}}}}

:\implies\:\:\sf{12a^2b=2\times2\times3\times a \times a\times b}

:\implies\:\:\sf{15ab^2=3\times5\times a\times b \times b }

Now,

:\implies\:\:\sf{12a^2b+15ab^2}

:\implies\:\: \sf {3(3 \times a \times b\times2\times2\times a)+(3\times a\times \times b \times 5 \times b )}

:\implies\:\: \sf {3 \times a \times b[(2\times2\times a)+( 5 \times b )]}

:\implies\:\: \sf {3 a b\times(4a+5b)}

:\implies\:\: \sf {3 a b(4a+5b)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\underline{\sf{\orange{Required\:Answer:}}}}

:\implies\: \sf{10x^2=2 \times 5 \times x \times x}

:\implies\:\sf{18x^3=2 \times 3 \times 3 \times x\times x\times x}

:\implies\: \sf{14x^4=2 \times 7 \times x \times x\times x\times x}

Now,

:\implies\: \sf{10x^2-18x^3+14x^4}

:\implies\:\sf{(2 \times x \times x \times 5)-(2 \times x \times x \times 3 \times 3 \times x)}

:\implies\:\sf{+ (2\times x \times x \times 7 \times x\times x)}

:\implies\:\: \sf{2\times x \times x \times [(5-(3 \times 3 \times x) +(7\times x \times x)] }

:\implies\:\: \sf{2x^2 \times (5-9x+7x^2) }

:\implies\:\: \sf{2x^2(7x^2-9x +5)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
4

12a²b+15ab²

=3ab(4a+5b)

Similar questions