Math, asked by shreyart, 11 months ago

factorise 12x^2-10x+2

Answers

Answered by FIREBIRD
22

Step-by-step explanation:

We Have :-

12x^{2}  - 10x + 2

To Find :-

factors \: and \: zeroes

Method Used :-

middle \: term \: splitting

Solution :-

12x^{2}  - 10x + 2 \\  \\  \\ 12x^{2}  - 6x - 4x + 2 \\  \\  \\ 6x(2x - 1) - 2(2x - 1) \\  \\  \\ (2x - 1)(6x - 2) \\  \\  \\ 2x - 1 = 0 \\  \\  \\ 2x = 1 \\  \\  \\ x =  \dfrac{1}{2}  \\  \\  \\ 6x - 2 = 0 \\  \\  \\ 6x = 2 \\  \\  \\ x =  \dfrac{1}{3}

Answered by ItzMysticalBoy
56

Question :-

  • Factorise : \sf{12x^2-10x+2}

Solution:-

Given :

  • \sf{12x^2-10x+2}

To Find :

  • Factorise

We have to find two numbers whose sum is -10 and product is 24. So, the numbers are -6 and -4.

\sf{:  \implies{12x^2-10x+2}}  \\ \\ \sf{: \implies{12x^2+( - 6 - 4) x+ 2}} \\ \\  \sf{: \implies{12x^2 - 6 x - 4x + 2}} \\  \\  \sf{:  \implies{6x(2x - 1) -2(  2x - 1})} \\  \\ \sf{: \implies{(2x - 1)(6x - 2 )}}

Now, we solve quadratic equation :

\sf{ : \implies{(2x - 1)(6x - 2 ) = 0} } \\  \\  \sf{ : \implies{2x = 0 + 1 \: or \: 6x = 0 + 2}} \\   \\ \sf{ : \implies{2x = 1 \: or \: 6x = 2}} \\  \\ \sf{ : \implies{x =  \dfrac{1}{2} \: or \: x =  \dfrac{2}{6} }} \\  \\ \sf{ : \implies{x = \dfrac{1}{2}\: or \: x =  \dfrac{1}{3} }}

\rule {307}{2}

Similar questions