factorise 1331t² - 7260t²s + 13200ts² + 8000s³
Answers
Input:
1331 t^2 - 7260 t^2 s + 13200 t s^2 + 8000 s^3
3D plot:
3D plot
Contour plot:
Contour plot
Alternate forms:
8000 s^3 + 13200 s^2 t + 121 (11 - 60 s) t^2
8000 s^3 + t (13200 s^2 + (1331 - 7260 s) t)
s (s (8000 s + 13200 t) - 7260 t^2) + 1331 t^2
Roots:
60 s - 11!=0, t = (40 (15 s^2 - sqrt(5) sqrt(s^3 (105 s - 11))))/(11 (60 s - 11))
60 s - 11!=0, t = (40 (sqrt(5) sqrt(s^3 (105 s - 11)) + 15 s^2))/(11 (60 s - 11))
Root:
s = 11/60, t = -1/9
Polynomial discriminant:
Δ_s = 3061257408000000 (7 t^6 - 10 t^5 - t^4)
Integer root:
s = 0, t = 0
Roots for the variable t:
t = (40 (15 s^2 - sqrt(5) sqrt(105 s^4 - 11 s^3)))/(11 (60 s - 11))
t = (40 (15 s^2 + sqrt(5) sqrt(105 s^4 - 11 s^3)))/(11 (60 s - 11))
Derivative:
d/ds(1331 t^2 - 7260 t^2 s + 13200 t s^2 + 8000 s^3) = 60 (400 s^2 + 440 s t - 121 t^2)
Indefinite integral:
integral(8000 s^3 + 13200 s^2 t + 1331 t^2 - 7260 s t^2) ds = 2000 s^4 + 4400 s^3 t - 3630 s^2 t^2 + 1331 s t^2 + constant
Definite integral over a disk of radius R:
integral integral_(s^2 + t^2<R^2)(8000 s^3 + 13200 s^2 t - 7260 s t^2 + 1331 t^2) ds dt = (1331 π R^4)/4
Definite integral over a square of edge length 2 L:
integral_(-L)^L integral_(-L)^L (8000 s^3 + 13200 s^2 t + 1331 t^2 - 7260 s t^2) dt ds = (5324 L^4)/3