Math, asked by urmila1780, 11 months ago

Factorise: 14x^6 – 45x^3y^3 – 14y^6​

Answers

Answered by sonuvuce
47

Answer:

(7x^{3} +2y^{3} )(2x^{3} -7y^{3} )

Step-by-step explanation:

14x^{6} -45x^{3} y^{3} -14y^{6}

=14x^{6} -49x^{3} y^{3}+4x^{3} y^{3} -14y^{6}

=7x^{3} (2x^{3} -7y^{3} )+2y^{3}(2x^{3}  -7y^{3} )

=(7x^{3} +2y^{3} )(2x^{3} -7y^{3} )

Answered by abhi178
33

it is given that , 14x^6 - 45x^3y^3 - 14y^6

= 14x^6 - 49x^3y^3 + 4x^3y^3 - 14y^6

= 7x^3(2x^3 - 7y^3) + 2y^3(2x^3 - 7y^3)

= (7x^3 + 2y^3)(2x^3 - 7y^3)

[ it can also be a solution]

now, for (7x³ + 2y³) , we can write it (\sqrt[3]{7}x)^3+(\sqrt[3]{2}y)^3

from algebraic identity,

a³ + b³ = (a + b)(a² - ab + b³)

so, (\sqrt[3]{7}x)^3+(\sqrt[3]{2}y)^3 = (\sqrt[3]{7}x+\sqrt[3]{2}y)(\sqrt[3]{49}x^2+\sqrt[3]{4}y^2-\sqrt[3]{14}xy)

similarly from algebraic identity,

a³ - b³ = (a - b)(a² + ab + b²)

or, (2x^3-7y^3)=(\sqrt[3]{2}x)^3-(\sqrt[3]{7}y)^3

or, =(\sqrt[3]{2}x-\sqrt[3]{7}y)(\sqrt[3]{4}x^2+\sqrt[3]{49}y^3+\sqrt[3]{14}xy)

hence, factorisation of 14x^6 - 45x^3y^3 - 14y^6

=(\sqrt[3]{7}x+\sqrt[3]{2}y)(\sqrt[3]{49}x^2+\sqrt[3]{4}y^2-\sqrt[3]{14}xy)(\sqrt[3]{2}x-\sqrt[3]{7}y)(\sqrt[3]{4}x^2+\sqrt[3]{49}y^3+\sqrt[3]{14}xy)

Similar questions