Math, asked by rockey3, 1 year ago

factorise 2√2a^3+8b^3 -27c^3+18√2abc

Answers

Answered by ytbeastgamer9
68

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
69

Answer:

\red { 2\sqrt{2} a^{3} + 8b^{3} - 27c^{3} + 18\sqrt{2}abc}

\green {=(\sqrt{2}a+2b-3c)(2a^{2}+4b^{2}+9c^{2}-2\sqrt{2}ab+6bc+3\sqrt{2}ca)}

Step-by-step explanation:

 2\sqrt{2} a^{3} + 8b^{3} - 27c^{3} + 18\sqrt{2}abc

 =(\sqrt{2}a)^{3}+(2b)^{3}+(-3c)^{3}-3\times (\sqrt{2}a)(2b)(-3c)}

 \pink { x^{3}+y^{3}+z^{3}-3xyz}

\orange = { (x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)}

 = (\sqrt{2}a+2b-3c)[(\sqrt{2}a)^{2}+(2b)^{2}+(-3c)^{2} - (\sqrt{2}a)(2b)-(2b)(-3c)-(-3c)(\sqrt{2}a)]

 = (\sqrt{2}a+2b-3c)(2a^{2}+4b^{2}+9c^{2}-2\sqrt{2}ab+6bc+3\sqrt{2}ca)

Therefore.,

\red { 2\sqrt{2} a^{3} + 8b^{3} - 27c^{3} + 18\sqrt{2}abc}

\green {=(\sqrt{2}a+2b-3c)(2a^{2}+4b^{2}+9c^{2}-2\sqrt{2}ab+6bc+3\sqrt{2}ca)}

•••♪

Similar questions