Math, asked by deendayalkuamr3, 1 year ago


Factorise – 2 √2a3+8b3-27c3+18 2√abc

Answers

Answered by mantasakasmani
62
this is your answer...
Attachments:
Answered by athleticregina
36

Answer:

(\sqrt{2}a)^3+(2b)^3+(-3c)^3-3(\sqrt{2}a)(2b)(-3c)=(\sqrt{2}a+2b-3c)(2a^2+4b^2+9c^2-2\sqrt{2}ab+6bc+3\sqrt{2}ac)

Step-by-step explanation:

Given :  2\sqrt{2}a^3+8b^3-27c^3+18\sqrt{2}abc

We have to factorize the given expression.

Using algebraic identity

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

Comparing left side of identity with given expression

(\sqrt{2}a)^3+(2b)^3+(-3c)^3-3(\sqrt{2}a)(2b)(-3c)

Thus, a=\sqrt{2}a\\\\ b=2b\\\\ c=-3c

Substitute, we have,

(\sqrt{2}a)^3+(2b)^3+(-3c)^3-3(\sqrt{2}a)(2b)(-3c)=(\sqrt{2}a+2b+(-3c))((\sqrt{2}a)^2+(2b)^2+(-3c)^2-(\sqrt{2}a)(2b)-(2b)(-3c)-(-3c)(\sqrt{2}a))

On simplify, we get,

(\sqrt{2}a)^3+(2b)^3+(-3c)^3-3(\sqrt{2}a)(2b)(-3c)=(\sqrt{2}a+2b-3c)(2a^2+4b^2+9c^2-2\sqrt{2}ab+6bc+3\sqrt{2}ac)

Thus the factorize form of given expression 2\sqrt{2}a^3+8b^3-27c^3+18\sqrt{2}abc is (\sqrt{2}a+2b-3c)(2a^2+4b^2+9c^2-2\sqrt{2}ab+6bc+3\sqrt{2}ac)

Similar questions