Math, asked by avtarsinghavta61, 6 months ago

factorise
20t square -27t-99​

Answers

Answered by Harshita504
0

Hope it helps you out.

Mark as bralinst plz .

Rate the answer also.

Attachments:
Answered by lishasain09
0

Answer:

t=−  4/3

​ =−0.750

t=  5 \4

​=0.800

Step-by-step explanation:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    20*t^2-(t+12)=0  

Step by step solution :

STEP

1

:

Equation at the end of step 1

 (22•5t2) -  (t + 12)  = 0  

STEP

2

:

Trying to factor by splitting the middle term

2.1     Factoring  20t2-t-12  

The first term is,  20t2  its coefficient is  20 .

The middle term is,  -t  its coefficient is  -1 .

The last term, "the constant", is  -12  

Step-1 : Multiply the coefficient of the first term by the constant   20 • -12 = -240  

Step-2 : Find two factors of  -240  whose sum equals the coefficient of the middle term, which is   -1 .

     -240    +    1    =    -239  

     -120    +    2    =    -118  

     -80    +    3    =    -77  

     -60    +    4    =    -56  

     -48    +    5    =    -43  

     -40    +    6    =    -34  

     -30    +    8    =    -22  

     -24    +    10    =    -14  

     -20    +    12    =    -8  

     -16    +    15    =    -1    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -16  and  15  

                    20t2 - 16t + 15t - 12

Step-4 : Add up the first 2 terms, pulling out like factors :

                   4t • (5t-4)

             Add up the last 2 terms, pulling out common factors :

                   3 • (5t-4)

Step-5 : Add up the four terms of step 4 :

                   (4t+3)  •  (5t-4)

            Which is the desired factorization

Equation at the end of step

2

:

 (5t - 4) • (4t + 3)  = 0  

STEP

3

:

Theory - Roots of a product

3.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation:

3.2      Solve  :    5t-4 = 0  

Add  4  to both sides of the equation :  

                     5t = 4

Divide both sides of the equation by 5:

                    t = 4/5 = 0.800

Solving a Single Variable Equation:

3.3      Solve  :    4t+3 = 0  

Subtract  3  from both sides of the equation :  

                     4t = -3

Divide both sides of the equation by 4:

                    t = -3/4 = -0.750

Similar questions