Math, asked by anitabmks, 1 day ago

Factorise : 216 a^3 - 2√2b^3 ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given algebraic expression is

\rm \: 216 {a}^{3} - 2 \sqrt{2} {b}^{3} \\

can be rewritten as

\rm \: =  \:  6 \times 6 \times 6 \times  {a}^{3} -  \sqrt{2} \times  \sqrt{2}   \times  \sqrt{2} \times  {b}^{3} \\

\rm \:  =  \:  {(6a)}^{3} -  {( \sqrt{2}b) }^{3}  \\

We know,

\boxed{ \rm{ \: {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \: }} \\

So, here

\rm \: x = 6a \\

\rm \: y =  \sqrt{2}b \\

So, on substituting the values, we get

\rm \:  =  \: (6a -  \sqrt{2}b)[ {(6a)}^{2} + (6a)( \sqrt{2}b) +  {( \sqrt{2} b)}^{2} ] \\

\rm \:  =  \: (6a -  \sqrt{2}b)[ 36 {a}^{2}  + 6 \sqrt{2}ab +  {2b}^{2}  ] \\

Hence,

\rm\implies \:216 {a}^{3} - 2 \sqrt{2} {b}^{3}= (6a -  \sqrt{2}b)[ 36 {a}^{2}  + 6 \sqrt{2}ab +  {2b}^{2} ] \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions