Math, asked by sonakshi8173, 8 months ago

factorise 216a³-2root2b³​

Answers

Answered by mysticd
3

 Given \: 216a^{3} -2\sqrt{2} b^{3}

 = 6^{3} a^{3} - (\sqrt{2})^{3} b^{3}

 =( 6a)^{3} - (\sqrt{2}b)^{3}

/* By algebraic identity */

 \boxed{ \pink { x^{3} - y^{3} = (x-y)(x^{2}+xy+y^{2})}}

 = (6a-\sqrt{2}b)[ (6a)^{2} + (6a)(\sqrt{2}b) + (\sqrt{2}b)^{2} ]

 = (6a-\sqrt{2}b)(36a^{2} + 6\sqrt{2}ab + 2b^{2} )

Therefore.,

 \red{ 216a^{3} -2\sqrt{2} b^{3} }

 \green {= (6a-\sqrt{2}b)(36a^{2} + 6\sqrt{2}ab + 2b^{2} ) }

••♪

Similar questions