Math, asked by bye98, 1 year ago

factorise 25p2 _ 36q2​

Answers

Answered by TRISHNADEVI
31
 \red{ \huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \: \: SOLUTION \: \: \red{ \mid}}}}}}}}

 \bold{25p {}^{2} - 36q {}^{2} } \\ \\ \bold{ = (5p) {}^{2} - (6q) {}^{2} } \\ \\ \\ \underline{\bold{ \: \: Using \: \: \red {x {}^{2} - y {}^{2} = (x + y)(x - y)} \: \: formula \: \: }} \\ \\ \\ \bold{ = (5p) {}^{2} - (6q) {}^{2} } \\ \\ \bold{ = (5p + 6q)(5p - 6q)} \\ \\ \\ \underline{\bold{\therefore \: \: 25p {}^{2} - 36q {}^{2} = (5p+6q)(5p-6q)}}
Answered by ankhidassarma9
0

Answer:

25p2 _ 36q2​ = (5p + 6q)(5p - 6q)

Step-by-step explanation:

  • Given expression is 25p2 _ 36q2​
  • We notice that the expression is a difference of two perfect squares.

        ∴  It is in the form of x2 - y2

Now, 25p2 _ 36q2​

         = (5p) ^{2} - (6q)^{2}...............................................(i)

  • Hence Identity  , x^{2} - y^{2}= (x + y)(x - y) can be applied in the given expression.
  • Applying this formula in equation (i), we get

       (5p)^{2} - (6q^{2}) = (5p + 6q)(5p - 6q)

  • So, the factors are (5p + 6q), (5p - 6q)

Similar questions