Math, asked by karthik9C16bbul, 3 months ago

Factorise: 25x^-36y^

Answers

Answered by kirthanaa1612
0

Answer:

Step-by-step explanation:

i think the question is 25x^2-36^2

by adding roots

= 5x-6y

Answered by Anonymous
12

\large\sf\underline{Correct\:question\::}

  • Factorise : \sf\:25x^{2}-36y^{2}

\large\sf\underline{Given\::}

  • \sf\:25x^{2}-36y^{2}

\large\sf\underline{To\::}

  • Factorise the given expression.

\large\sf\underline{Solution\::}

\sf\:25x^{2}-36y^{2}

We will use one identity that is :

\large{\underline{\boxed{\mathrm\green{a^{2}-b^{2}=(a+b)(a-b)}}}}

\sf\implies\:(5x)^{2}-(6y)^{2}

Here ,

  • a = 5x

  • b = 6x

So let's substitute the value of a and b in the identity :

{\sf{{\purple{\implies\:(5x+6y) (5x-6y)}}}} {\sf{{\red{★}}}}

\large\sf\underline{Some\:more\:identity\::}

  • \sf\:(a+b)^{2}=a^{2}+2ab+b^{2}

  • \sf\:(a-b)^{2}=a^{2}-2ab+b^{2}

  • \sf\:a^{2}-b^{2}=(a+b) (a-b)

  • \sf\:(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca

  • \sf\:(a+b)^{3}=a^{3}+b^{3}+3ab(a+b)

  • \sf\:(a-b)^{3}=a^{3}-b^{3}-3ab(a-b)

‎ Scroll left to right to view the answer properly !

______________________

!! Hope it helps !!

Similar questions