Factorise: 25x² − 1 − 2y − y²
.
Answers
Answered by
9
Given:-
- 25x² - 1 - 2y - y²
We have to factorise it.
Answer:-
Given that,
25x² - 1 - 2y - y²
= 25x² - (1 + 2y + y²)
= 25x² - (y² + 2y + 1)
Splitting the middle term,
= 25x² - (y² + y + y + 1)
= 25x² - {y(y + 1) + 1(y + 1)}
= 25x² - {(y + 1)(y + 1)}
= 25x² - (y + 1)²
= (5x)² - (y + 1)²
- Now we will use a² - b² = (a + b)(a - b) with a = 5x and b = y + 1
= {5x + (y + 1)}{5x - (y + 1)}
= (5x + y + 1)(5x - y - 1) Ans
Extra Knowledge:-
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ = (a + b)(a² + b² - ab)
- a³ - b³ = (a - b)(a² + b² + ab)
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
sc200971:
thanks it's helpful
Answered by
89
Question :
Factorise: 25x² − 1 − 2y − y² .
Solution :
→ 25x² - (1 + 2y + y²)
→ 25x² - (y² + 2y + 1)
Splitting the middle term,
→ 25x² - (y² + y + y + 1)
→ 25x² - {y(y + 1) + 1(y + 1)}
→ 25x² - {(y + 1)(y + 1)}
→ 25x² - (y + 1)²
→ (5x)² - (y + 1)²
Now we will use a² - b² = (a + b)(a - b) with a = 5x and b = y + 1
➡ {5x + (y + 1)} {5x - (y + 1)}
➡ (5x + y + 1) (5x - y - 1)
Additional Information :
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ = (a + b)(a² + b² - ab)
- a³ - b³ = (a - b)(a² + b² + ab)
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Thank you.
Similar questions