Factorise: 27p^3-1/216-9/2p^2+1/4p
Answers
Answered by
16
hey Mercedes
27p^3 - 1/216 - 9/2p^2 + 1/4p
= (3p)^3 - (1/6)^3 - 9/2p^2 + 1/4p
= (3p - 1/6)[(3p)^2 + p/2 + 1/36)] - (3p/2)(3p - 1/6)
= (3p - 1/6)(9p^2 + p/2 + 1/36 - 3p/2)
= (3p - 1/6)(9p^2 - 2p/2 + 1/36)
= (3p - 1/6)(9p^2 - p + 1/36)
= (3p - 1/6)(3p - 1/6)(3p - 1/6)
= (3p - 1/6)^3
27 - 125a^3 - 135a + 225a^2
= 3^3 - (5a)^3 - 135a + 225a^2
= (3 - 5a)(9 + 15a + 25a^2) - 45a(3 - 5a)
= (3 - 5a)(9 + 15a + 25a^2 - 45a)
= (3 - 5a)(9 - 30a + 25a^2)
= (3 - 5a)(3 - 5a)(3 - 5a)
= (3 - 5a)^3
hope it helps you ❤️
27p^3 - 1/216 - 9/2p^2 + 1/4p
= (3p)^3 - (1/6)^3 - 9/2p^2 + 1/4p
= (3p - 1/6)[(3p)^2 + p/2 + 1/36)] - (3p/2)(3p - 1/6)
= (3p - 1/6)(9p^2 + p/2 + 1/36 - 3p/2)
= (3p - 1/6)(9p^2 - 2p/2 + 1/36)
= (3p - 1/6)(9p^2 - p + 1/36)
= (3p - 1/6)(3p - 1/6)(3p - 1/6)
= (3p - 1/6)^3
27 - 125a^3 - 135a + 225a^2
= 3^3 - (5a)^3 - 135a + 225a^2
= (3 - 5a)(9 + 15a + 25a^2) - 45a(3 - 5a)
= (3 - 5a)(9 + 15a + 25a^2 - 45a)
= (3 - 5a)(9 - 30a + 25a^2)
= (3 - 5a)(3 - 5a)(3 - 5a)
= (3 - 5a)^3
hope it helps you ❤️
Answered by
5
27p^3 - 1/216 - 9/2p^2 + 1/4p
= (3p)^3 - (1/6)^3 - 9/2p^2 + 1/4p
= (3p - 1/6)[(3p)^2 + p/2 + 1/36)] - (3p/2)(3p - 1/6)
= (3p - 1/6)(9p^2 + p/2 + 1/36 - 3p/2)
= (3p - 1/6)(9p^2 - 2p/2 + 1/36)
= (3p - 1/6)(9p^2 - p + 1/36)
= (3p - 1/6)(3p - 1/6)(3p - 1/6)
= (3p - 1/6)^3
27 - 125a^3 - 135a + 225a^2
= 3^3 - (5a)^3 - 135a + 225a^2
= (3 - 5a)(9 + 15a + 25a^2) - 45a(3 - 5a)
= (3 - 5a)(9 + 15a + 25a^2 - 45a)
= (3 - 5a)(9 - 30a + 25a^2)
= (3 - 5a)(3 - 5a)(3 - 5a)
= (3 - 5a)^3
vidhi20oct:
u will also get love from indians
Similar questions
Social Sciences,
7 months ago
Hindi,
7 months ago
Physics,
7 months ago
Geography,
1 year ago
Biology,
1 year ago