Math, asked by ammukutty37, 1 year ago

Factorise 27p cube -1/216-9/2p square-1/4p


kesiathomas90: Is this is like this =>
kesiathomas90: (27p cube - 1) / 216 - 9 / (2p square) - 1 / 4p ???
ammukutty37: Yes
kesiathomas90: Kkk..
kesiathomas90: Which grade's question??
kesiathomas90: **Reply**
kesiathomas90: ...
kesiathomas90: ??
ammukutty37: 9th grade
kesiathomas90: Kkk

Answers

Answered by kesiathomas90
2

Answer -

Factorise :

          (27p³ - 1) / 216 - 9 / 2p² - 1 / 4p

                   ⇒ [ 216(9) - 2p² (27p³ - 1) ] / 216 × 2p² - [1 / 4p]

                   ⇒ [ 1944 - 54p^5 + 2p² ] / 432p² - [1 / 4p]

                  ⇒ 432p² (1) - 4p (1944 - 54p^5 + 2p²)

                  ⇒ 432p² - 7776p + 216p^6 - 8p³

               216p^6 - 8p³ + 432p² - 7776p

               

HOPE IT HELPS ...


kesiathomas90: Pls say,
if it is wrong.. So that I can edit it ....
kesiathomas90: Pls
kesiathomas90: Mark as brainliest
Answered by Salmonpanna2022
2

Step-by-step explanation:

Given:-

 \tt{27 {p}^{3}  -  \frac{1}{216}  -  \frac{9}{2}  {p}^{2}  +  \frac{1}{4} p} \\  \\

What to do:-

To Factorise the expression.

Solution:-

Let's solve the problem,

We have,

 \tt{27 {p}^{3}  -  \frac{1}{216}  -  \frac{9}{2}  {p}^{2}  +  \frac{1}{4} p} \\  \\

⟹ \tt{(3p {)}^{2}  -  \bigg( \frac{1}{6}  \bigg )^{2}  -  \frac{3}{2} p \bigg(3p -  \frac{1}{6}  \bigg) }\\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6 }\bigg)\left\{(3p {)}^{2} + 3p \times   \frac{1}{6}  +  \bigg({ \frac{1}{6} \bigg)^{2}  }\right\} -  \frac{3}{2} p \bigg(3p -  \frac{1}{6}  \bigg) }\\  \\ </p><p>

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(9 {p}^{2}  + p \times  \frac{1}{2}  +  \frac{1}{36}  \bigg) -  \frac{3}{2} p \bigg(3p -  \frac{1}{6}  \bigg) }\\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(9 {p}^{2}  +  \frac{p}{2}  +  \frac{1}{36}  -  \frac{3}{2} p \bigg)} \\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(9 {p}^{2}  - p +  \frac{1}{36}  \bigg)} \\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \left \{(3p {)}^{2} - 2 \times 3p \times  \frac{1}{6}   +  \bigg( \frac{1}{6}   \bigg)^{2} \right \} }\\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(3p -  \frac{1}{6}  \bigg )^{2} } \\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(3p -  \frac{1}{6}  \bigg) \bigg(3p -  \frac{1}{6}  \bigg) } \:  \:  \red{Ans}.\\  \\

I hope it's help you...☺

Similar questions