Factorise 27p*p*p -64Q*Q*Q
Answers
Answered by
2
Step-by-step explanation:
27p×p×p-64q×q×q
9×3×p×p×p-8×8×q×q×q
p(9×3×p×p)-8q(8×q×q)
Answered by
3
Correct Question:-
Factorise
125p³ - 64q³
Solution:-
➡️Write (125p³ - 64q³) in the form of (a3 - b3).
125p³ - 64q³ = (5p)³ - (4q)³
➡️(5p)³ - (4q)³ is in the form of (a³ - b³).
➡️Comparing (a³ - b³) and (5p)³ - (4q)³, we get
a = 5p
b = 4q
➡️Write the formula for (a3 - b3) given in case 2 above.
a³ - b³ = (a - b)(a² + ab + b²)
➡️Substitute 5p for a and 4q for b.
(5p)³ - (4q)³ = (5p - 4q)[(5p)² + (5p)(4q) + (4q)²]
125p³ - 64q³ = (5p - 4q)(25p² + 20pq + 16q²)
General step for Factorising
•a³ - b³ = (a - b)³ + 3ab(a - b)
•a³ - b³ = (a - b)[(a - b)² + 3ab]
•a³ - b³ = (a - b)[a² - 2ab + b² + 3ab]
•a³ - b³ = (a - b)(a² + ab + b²)
Similar questions