factorise 27x^3+y^3+z^3-3xy^2
Answers
Answered by
0
Ans:- 27x^3+y^3+z^3-3xyz
= {(3x + y)^3 - 9xy(3x + y)} + z^3 - 3xyz
= u^3 - 3xyu + z^3 - 3xyz, where (3x + y) = u
= u^3 + z^3 - 3xy(u + z)
= (u + z)(u^2 - uz + z^2) - 3xy(u + z)
= (u + z) (u^2 - uz + z^2 - 3xy)
= (3x + y + z) {(3x + y)^2 + z^2 - (3x + y)z - 3xy}
= (3x + y + z)(9x^2 + y^2 + z^2 - 3xz - yz - 3xy + 6xy}
= (3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3xz)
here is your answer
hope it will help you
Similar questions