Math, asked by Xcheto, 10 months ago

Factorise : 27x^3+ y^3 + z^3 - 9xyz​

Answers

Answered by Delta13
2

\large{\underline{\boxed{\text{Solution:}}}}</p><p>

27 {x}^{3}  + y {}^{3}  +  {z}^{3} - 9xyz \\ \\   = (3x) {}^{3}   +  {y}^{3}  +  {z}^{3}  - 9xyz \\   \\ =  {(3x)}^{3}  +  {y}^{3}  +  {z}^{3}  - 3 \times 3x \times y \times z

Using identity

 \small{\boxed{ {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc = (a + b + c)( {a}^{2}   +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)}}

Putting a = 3x , b = y , c = z

 \implies  {27x}^{3}  +  {y}^{3}  +  {z}^{3}  - 9xyz \\  \\ \small { = (3x + y + z) \left[ {(3x)}^{2}  +  {y}^{2}  +  {z}^{2}  - (3x)(y) - (y)(z) - (z)(3x)\right]}

  \implies \boxed{\green{ ({3x}^{2} +  {y}^{2} +  {z}^{2}  ) \left( {3x}^{2} +  {y}^{2}    +  {z}^{2}  - 3xy - yz - 3zx\right)}}

Hope it helps you

Mark as brainliest

Answered by Anonymous
1

\rule{300}2

\huge\tt{TO~FACTORISE:}

  • 27x³+ y³ + z³ - 9xyz

\rule{300}2

\huge\tt{FACTORISING:}

\begin{lgathered}↪27 {x}^{3} + y {}^{3} + {z}^{3} - 9xyz \\ \\ ↪ (3x) {}^{3} + {y}^{3} + {z}^{3} - 9xyz \\ \\ ↪ {(3x)}^{3} + {y}^{3} + {z}^{3} - 3 \times 3x \times y \times z\end{lgathered}

Putting a = 3x , b = y , c = z

\begin{lgathered}↪ {27x}^{3} + {y}^{3} + {z}^{3} - 9xyz \\ \\ \small { ↪ (3x + y + z) \left[ {(3x)}^{2} + {y}^{2} + {z}^{2} - (3x)(y) - (y)(z) - (z)(3x)\right]}\end{lgathered}

\Large\tt{ ↪({3x}^{2} + {y}^{2} + {z}^{2} )}

\Large\tt{↪( {3x}^{2} + {y}^{2} + {z}^{2} - 3xy - yz - 3zx)}

\rule{300}2

Similar questions