Math, asked by gunjanigam76, 9 months ago

factorise 27x^3+y^3+z^3-9xyz​

Answers

Answered by Anonymous
3

Answer:

 (3x + y  + z)(9 {x}^{2}  +  {y}^{2}  +  {z}^{2}  - 3xy - yz - 3zx)

Step-by-step explanation:

27 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 9xyz \\  \\  = (3x) ^{3}  + (y) ^{3}  + (z) ^{3}  - 3 \times 3x \times y \times z \\  \\   (Using \: identity \: a ^{3}  + b ^{3}  + c ^{3}  - 3abc = ( a \: + b + c)(a ^{2}  + b^{2}  + c ^{2}  - ab - bc - ca)) \\  \\ Putting \\ a = 3x \\ b = y \\ c = z \\  \\ We  \: get  \: ; \\  \\ (3x + y  + z)( {3x}^{2}  +  {y}^{2}  +  {z}^{2}  - (3x \times y) -( y \times z)  - (z \times 3x) \\  \\  = (3x + y  + z)(9 {x}^{2}  +  {y}^{2}  +  {z}^{2}  - 3xy - yz - 3zx)

HOPE IT HELPS YOU

THANKS

Answered by ItzVash003
2

27x3+y3+z3−9xyz</p><p></p><p></p><p>=(3x)3+y3+z3−9xyz</p><p></p><p></p><p>=(3x)3+y3+z3−3×3x×y×z</p><p></p><p></p><p>using identity</p><p></p><p></p><p>a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)</p><p></p><p></p><p>Putting a=3x,b=y,c=z</p><p></p><p></p><p>=(3x+y+z)(9x2+y2+z2−3xy−yz−3zx).</p><p></p><p>

I hope it's helpful to u

Similar questions