Math, asked by RC11, 1 year ago

factorise 27x^3+y^3+z^3-9xyz

Answers

Answered by Anonymous
44
Hello dear friend .
your answer is here
_____________________________

Sol.

given \:  \: 27 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 9xyz \\  \\  =  > (3 {x)}^{3}  +  {y}^{3}  +  {z}^{3}  - 9xyz \\  \\ using \:  \: identity \:  -  \\  {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z) \\ ( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx) \\  \\  =  > (3 {x})^{3}  +  {y}^{3}  +  {z}^{3} - 3(3x)(y)(z) \\  \\  =  > (3x + y + z) = (3 {x})^{2}  +  {y}^{2}  +  {z}^{2}  -  \\ (3x)(y) - (y)(z) - (z)(3x) \\  \\  =  > (3x + y + z)(9 {x}^{2}  +  {y}^{2}  +  {z}^{2}  - 3xy - yz - 3xz) \\  \\ answer
Hope it's helps you.
<<☺>>

rohitkumargupta: grt
Anonymous: thanks
Answered by Anonymous
11
Hey!

_____________________________________________________________________________________________

Question = 27x³ + y³ + z³ - 9xyz
_______________________________

Identity :-

_______________________________
x³ + y³ + z³ - 3xyz = (x + y + z) × (x² + y² + z² - xy - yz - zx)

_______________________________

= 27x³ + y³ + z³ - 9xyz

= (3x)³ + y³ + z³ - (3x) × y × z

_______________________________

•Now use the given Identity :-

=> (3x + y + z) = (3x)² + y² + z² - (3x) × y - (y) × (z) - (z) × (3x)

=> (3x + y + z) × (9x² + y² + z² - 3xy - yz - 3xz)

_____________________________________________________________________________________________

Regards :)

Cybary

Be Brainly
Attachments:
Similar questions