Math, asked by mhiptl164, 9 months ago

factorise- 27x3 plus y3 plus z3 - 9xyz =​

Attachments:

Answers

Answered by Anonymous
443

Answer:

 \bf  \large  \underline{\red{Question :  - }}

  •  \sf \to \: factorise \: - 27 {x}^{3}   +  {y}^{3}  +  {z}^{3}  - 9xyz =

 \bf  \large  \underline{\red{given :  - }}

  •  \sf \to \:  \: - 27 {x}^{3}   +  {y}^{3}  +  {z}^{3}  - 9xyz =

 \bf  \large  \underline{\red{To  \: Find:  - }}

  •  \text{ \sf \: Find the factory }

 \bf  \large  \underline{\red{solution:  - }}

 \sf \to \:  \: - 27 {x}^{3}   +  {y}^{3}  +  {z}^{3}  - 9xyz  \\  \\  \sf \to \:  -  3 \times  - 3  \times - 3 \times  {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 9xyz \\  \\  \sf \to \:   {( - 3x)}^{3}  +  {y}^{3}  +  {z}^{3}  - 3 \times 3x \times y \times z

 \sf{using \: identity \to}

 \sf \boxed{ \sf \red{ {a}^{3}  +  {b}^{3} +  {c}^{3}     - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2} +  {c}^{2}   - ab  - bc  -  ca)}}

 \sf \large \red  {then }:  -  \\  \\  \sf \:  \:  \:  \: a \:  = \: 3x \\   \\ \sf \: b =  y \\ \\   \sf \:c = z

 \sf \large \red{putting \: all \: value : - }

 \sf \:(3x + y + z )(9 {x}^{2}  +  {y}^{2}  +  {z}^{2}- 3xy - 3yz - 3zx)

 \\\\ \sf \red{hence }\: \: 9xyz \: and - 9xyz \: both \: have \: opposite \: sign  \: so \: become \: zeros

Answered by dasranju1975
10

27x³+y³+z³-9xyz

=> -27x³++-9xyz

=>-3×-3×-3×x³++-9xyz

=>(-3x)³++ - 3×3x × y × z

Using identity:-

a³+ + -3 abc = (a + b + c) ( + b² + ) (ab + bc + ca)

Then,

a = 3x

b = y

c = z

Putting all the value:-

(3x + y + z) (9x² + + - 3xy - 3yz - 3zx)

9xyz and -9xyz both have opposite sign so it becomes zeros.

please give me a thanks and mark as brainlist answer

Similar questions