Math, asked by akshatgambhir1184, 1 year ago

factorise: 27y cube+125z cube

Answers

Answered by gratefuljarette
566

Factorization of 27 y^{3}+125 z^{3}\ \text{is}\ \bold{(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right)}

Given:  

27 y^{3}+125 z^{3}

To find:

Factorization of 27 y^{3}+125 z^{3}

Solution:

We have to factorize -

27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3} \rightarrow(1) [ Since 27 = cube of 3, 125 = cube of 5]

We know that a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)

Let, a = 3y, b= 5z

Hence,

(3 y)^{3}+(5 z)^{3}=(3 y+5 z)\left[(3 y)^{2}+(5 z)^{2}-(3 y)(5 z)\right]

(3 y)^{3}+(5 z)^{3}=(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right) \rightarrow(2)

From eq. (1) and (2) we get,

27 y^{3}+125 z^{3} \equiv(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right)

Answered by mysticd
256

Answer:

 Factors\:of \: 27y^{3}+125z^{3}\\=(3y+5z)(9y^{2}-15yz+25z^{2})

Step-by-step explanation:

 Given \: 27y^{3}+125z^{3}\\=3^{3}y^{3}+5^{3}z^{3}\\=\big(3y\big)^{3}+\big(5z\big)^{3}

=(3y+5z)[(3y)^{2}-(3y)(5z)+(5z)^{2}]

/* By Algebraic identity:

+ = (a+b)(-ab+) */

=(3y+5z)(9y^{2}-15yz+25z^{2})

Therefore,

 Factors\:of \: 27y^{3}+125z^{3}\\=(3y+5z)(9y^{2}-15yz+25z^{2})

•••♪

Similar questions