Math, asked by jaswanth14, 1 year ago

factorise 2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4

Answers

Answered by likitha48potlup5ics6
10
Simplifying 2a2b2 + 2b2c2 + 2c2a2 + -1a4 + -1b4 + -1c4
 Reorder the terms: 2a2b2 + 2a2c2 + -1a4 + 2b2c2 + -1b4 + -1c4

Final result:
2a2b2 + 2a2c2 + -1a4 + 2b2c2 + -1b4 + -1c4

jaswanth14: Your answer is not given in the option choices!
Answered by Iammanjula
0

Answer:

(b+c-a)(a+b-c)(a-b+c)(a+b+c)

Step-by-step explanation:

2a^{2} b^{2}+2b^{2} c^{2}+2a^{2} c^{2}-a^{4}-b^{4}- c^{4}

= - (a^{4}+ b^{4}+ c^{4}-2a^{2} b^{2} - 2b^{2} c^{2} -2a^{2} c^{2}) [by reordering]

=-[ (a^{2})^{2}  + (b^{2})^{2}+ (c^{2})^{2}- 2a^{2} b^{2} -2b^{2} c^{2} +2a^{2} c^{2} -4a^{2} c^{2} ]

= -[ (a^{2}-b^{2}+c^{2})^{2} - 4a^{2} c^{2} ]

[ from the formula of (a-b+c)^{2} = a^{2}+ b^{2}+ c^{2}-2a^{2} b^{2}-2b^{2} c^{2} +2a^{2} c^{2}]

= -[ (a^{2}- b^{2}+ c^{2}-2ac) ( a^{2}- b^{2}+ c^{2}+2ac)]

= -[ (a-c)^{2}-b^{2} ][(a+c)^{2}-b^{2}]

=-(a-b-c)(a+b-c)(a-b+c)(a+b+c)

=(b+c-a)(a+b-c)(a-b+c)(a+b+c)

To learn more about factorisation please visit:

https://brainly.in/question/14380020

https://brainly.in/question/7045477

#SPJ6

Similar questions