Math, asked by yugrautela10394, 4 days ago

factorise (2a-3)² - 3a​

Answers

Answered by Anonymous
0

Answer:

(

2

3

)

2

3

\left(2a-3\right)^{2}-3a

(

2

3

)

(

2

3

)

3

(2a-3)(2a-3)-3a

2

Distribute

(

2

3

)

(

2

3

)

3

{\color{#c92786}{(2a-3)(2a-3)}}-3a

2

(

2

3

)

3

(

2

3

)

3

{\color{#c92786}{2a(2a-3)-3(2a-3)}}-3a

3

Distribute

2

(

2

3

)

3

(

2

3

)

3

{\color{#c92786}{2a(2a-3)}}{\color{#c92786}{-3(2a-3)}}-3a

4

2

6

6

+

9

3

{\color{#c92786}{4a^{2}-6a}}{\color{#c92786}{-6a+9}}-3a

4

Combine like terms

4

2

6

6

+

9

3

4a^{2}{\color{#c92786}{-6a}}{\color{#c92786}{-6a}}+9{\color{#c92786}{-3a}}

4

2

1

5

+

9

4a^{2}{\color{#c92786}{-15a}}+9

5

Use the sum-product pattern

(

2

3

)

2

3

(2a-3)^{2}{\color{#c92786}{-3a}}

4

2

3

1

2

+

9

4a^{2}{\color{#c92786}{-3a}}{\color{#c92786}{-12a}}+9

6

Common factor from the two pairs

4

2

3

1

2

+

9

4a^{2}-3a-12a+9

(

4

3

)

3

(

4

3

)

a(4a-3)-3(4a-3)

7

Rewrite in factored form

(

4

3

)

3

(

4

3

)

a(4a-3)-3(4a-3)

(

3

)

(

4

3

)

(a-3)(4a-3)

Solution

(

3

)

(

4

3

)

Step-by-step explanation:

Similar questions