factorise (2a-3)² - 3a
Answers
Answer:
(
2
−
3
)
2
−
3
\left(2a-3\right)^{2}-3a
(
2
−
3
)
(
2
−
3
)
−
3
(2a-3)(2a-3)-3a
2
Distribute
(
2
−
3
)
(
2
−
3
)
−
3
{\color{#c92786}{(2a-3)(2a-3)}}-3a
2
(
2
−
3
)
−
3
(
2
−
3
)
−
3
{\color{#c92786}{2a(2a-3)-3(2a-3)}}-3a
3
Distribute
2
(
2
−
3
)
−
3
(
2
−
3
)
−
3
{\color{#c92786}{2a(2a-3)}}{\color{#c92786}{-3(2a-3)}}-3a
4
2
−
6
−
6
+
9
−
3
{\color{#c92786}{4a^{2}-6a}}{\color{#c92786}{-6a+9}}-3a
4
Combine like terms
4
2
−
6
−
6
+
9
−
3
4a^{2}{\color{#c92786}{-6a}}{\color{#c92786}{-6a}}+9{\color{#c92786}{-3a}}
4
2
−
1
5
+
9
4a^{2}{\color{#c92786}{-15a}}+9
5
Use the sum-product pattern
(
2
−
3
)
2
−
3
(2a-3)^{2}{\color{#c92786}{-3a}}
4
2
−
3
−
1
2
+
9
4a^{2}{\color{#c92786}{-3a}}{\color{#c92786}{-12a}}+9
6
Common factor from the two pairs
4
2
−
3
−
1
2
+
9
4a^{2}-3a-12a+9
(
4
−
3
)
−
3
(
4
−
3
)
a(4a-3)-3(4a-3)
7
Rewrite in factored form
(
4
−
3
)
−
3
(
4
−
3
)
a(4a-3)-3(4a-3)
(
−
3
)
(
4
−
3
)
(a-3)(4a-3)
Solution
(
−
3
)
(
4
−
3
)
Step-by-step explanation: