factorise (2a-b-c)3 +(2b-c-a)3 +(2c-a-b)3
Answers
Step-by-step explanation:
a³+b³+c³ = 3abc
(2a-b-c)³+(2b-c-a)³+(2c-a-b)³ = 3(2a-b-c)(2b-c-a)(2c-a-b)
= 6a-3b-3c+6b-3c-3a+6c-3a-3b
Answer:
(2a-b-c)3 +(2b-c-a)3 +(2c-a-b)3 = (2a - b - c)(4a^2 + b^2 + c^2 - 2ab - 2ac + 2bc - 3abc)
Step-by-step explanation:
The given expression can be factorized using the identity for the sum of cubes. The identity states that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc). Here's how we can use this identity to factorize the expression:
Let's rewrite the given expression as:
(2a)^3 + (-b)^3 + (-c)^3 + 3(2a)(-b)(-c) + 3(-b)(-c)(2b) + 3(-c)(2a)(2b)
We can now apply the identity for the sum of cubes to the first three terms, and we get:
(2a - b - c)(4a^2 + b^2 + c^2 - 2ab - 2ac + 2bc)
The remaining terms can be simplified as:
3(2a)(-b)(-c) + 3(-b)(-c)(2b) + 3(-c)(2a)(2b) = -12abc
Putting it all together, we get:
(2a-b-c)3 +(2b-c-a)3 +(2c-a-b)3 = (2a - b - c)(4a^2 + b^2 + c^2 - 2ab - 2ac + 2bc - 3abc)
Learn more about Factorization :
https://brainly.in/question/7083582
#SPJ3