factorise: 2ab minus a square minus b square +1
Answers
Answer:
( 1- a + b) ( 1+ a- b)
Step-by-step explanation:
Used identity
Answer:
2ab - a² - b² + 1 = (1 - a + b)(1 + a - b)
Step-by-step explanation:
We can solve it in many ways,
Method 1
We have,
2ab - a² - b² + 1
Taking common factor (-1).
= (-1)(-2ab + a² + b² - 1)
= (-1)(a² - 2ab + b² - 1²)
Using the identity,
a² - 2ab + b² = (a - b)²
= (-1)((a - b)² - 1²)
Using the identity,
x² - y² = (x + y)(x - y)
= (-1)((a - b + 1)(a - b - 1))
= (-1)(a - b + 1)(a - b - 1)
Rearranging
= (-1)(a - b - 1)(a - b + 1)
= (-a + b + 1)(a - b + 1)
Rearranging,
= (1 - a + b)(1 + a - b)
Method 2
We have,
2ab - a² - b² + 1
Rearranging,
1 - a² + 2ab - b²
Taking the common factor out,
1 - (a² - 2ab + b²)
Using the identity,
a² - 2ab + b² = (a - b)²
So,
1 - (a² - 2ab + b²)
= 1 - (a - b)²
We can say,
1 = 1²
So,
= 1² - (a - b)²
Using the identity,
x² - y² = (x + y)(x - y)
Thus,
= (1 + a - b)(1 - (a - b))
= (1 + a - b)(1 - a + b)
Rearranging,
= (1 - a + b)(1 + a - b)
Hence,
2ab - a² - b² + 1 = (1 - a + b)(1 + a - b)
Hope it helped and believing you understood it. All the best.