Math, asked by Suchitrasihag1, 1 year ago

factorise 2root 2 x cube + 3 root 3 y cube + 5 root 5 minus 3 root 30 xy

Answers

Answered by winner123
22
can u give in equation form?

Suchitrasihag1: Mtlb
Answered by harendrachoubay
31

The factorisation of 2\sqrt{2}x^3+3\sqrt{3}y^{3}+5\sqrt{5}-3\sqrt{30}xy =(\sqrt{2}x+\sqrt{3}y)(2x^2-\sqrt{6}xy+3y^2) +\sqrt{5}(5-3\sqrt{6}xy)

Step-by-step explanation:

We have,

2\sqrt{2}x^3+3\sqrt{3}y^{3}+5\sqrt{5}-3\sqrt{30}xy

To find, the factorisation of 2\sqrt{2}x^3+3\sqrt{3}y^{3}+5\sqrt{5}-3\sqrt{30}xy=?

2\sqrt{2}x^3+3\sqrt{3}y^{3}+5\sqrt{5}-3\sqrt{30}xy

=(\sqrt{2}x)^3+(\sqrt{3}y)^{3}+5\sqrt{5}-3\sqrt{6\times 5}xy

Using the algebraic identity,

a^{3} +b^{3}=(a+b)(a^2-ab+b^2)

=(\sqrt{2}+(\sqrt{3}y)[(\sqrt{2}x)^2-\sqrt{2}x+\sqrt{3}y(\sqrt{3}y)^{2}]+5\sqrt{5}-3\sqrt{5}\sqrt{6}xy

=(\sqrt{2}x+\sqrt{3}y)(2x^2-\sqrt{6}xy+3y^2) +\sqrt{5}(5-3\sqrt{6}xy)

The factorisation of 2\sqrt{2}x^3+3\sqrt{3}y^{3}+5\sqrt{5}-3\sqrt{30}xy =(\sqrt{2}x+\sqrt{3}y)(2x^2-\sqrt{6}xy+3y^2) +\sqrt{5}(5-3\sqrt{6}xy)

Hence, the factorisation of 2\sqrt{2}x^3+3\sqrt{3}y^{3}+5\sqrt{5}-3\sqrt{30}xy =(\sqrt{2}x+\sqrt{3}y)(2x^2-\sqrt{6}xy+3y^2) +\sqrt{5}(5-3\sqrt{6}xy)

Similar questions