factorise 2x^2+y^2+8z^2-2√2 xy + 4√2 yz-8xz
please tell fast please
Answers
Answer:
(-√2x + y + 2√2z)(- √2x + y + 2√2z)
Step-by-step explanation:
Given
2x^2 + y^2 + 8z^2 – 2√2xy + 4√2yz – 8xz
Using identity,
(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx
We can say that,
x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = (x + y + z)^2
2x^2 + y^2 + 8z^2 – 2√2xy + 4√2yz – 8xz
= (-√2x)^2 + (y)^2 + (2√2z)^2 + (2 × -√2x × y) + (2 × y × 2√2z) + (2 × 2√2 × -√2x)
= (-√2x + y + 2√2z)^2
= (-√2x + y + 2√2z)(- √2x + y + 2√2z)
ANSWER :
Given 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
Using identity,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
We can say that,
x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
= (-√2x)2 + (y)2 + (2√2z)2 + (2 × -√2x × y) + (2 × y × 2√2z) + (2 × 2√2 × -√2x)
= (-√2x + y + 2√2z)2
= (-√2x + y + 2√2z)(- √2x + y + 2√2z)