Math, asked by AshnaKumar, 4 months ago

Factorise : 2x^2+y^2+8z^2-√2xy-4√2 yz+8xz​

Answers

Answered by bavanpreet07
1

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:E=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz.E=2x2+y2+8z2−22xy+42yz−8xz.

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:E=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz.E=2x2+y2+8z2−22xy+42yz−8xz.We will be using the following factorisation formula:

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:E=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz.E=2x2+y2+8z2−22xy+42yz−8xz.We will be using the following factorisation formula:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca.(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:E=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz.E=2x2+y2+8z2−22xy+42yz−8xz.We will be using the following factorisation formula:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca.(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.We have

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:E=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz.E=2x2+y2+8z2−22xy+42yz−8xz.We will be using the following factorisation formula:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca.(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.We have\begin{gathered}E\\\\=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz\\\\=(-\sqrt2x)^2+y^2+(2\sqrt2z)^2+2(-\sqrt2x)y+2y(2\sqrt2z)+2(2\sqrt2z)(-\sqrt2x)\\\\=(-\sqrt2x+y+2\sqrt2z)^2\\\\=(-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).\end{gathered}E=2x2+y2+8z2−22xy+42yz−8xz=(−2x)2+y2+(22z)2+2(−2x)y+2y(22z)+2(22z)(−2x)=(−2x+y+22z)2=(−2x+y+22z)(−2x+y+22z).

Answer: The answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z). )Step-by-step explanation:  We are given to factorise the following expression:E=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz.E=2x2+y2+8z2−22xy+42yz−8xz.We will be using the following factorisation formula:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca.(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.We have\begin{gathered}E\\\\=2x^2+y^2+8z^2-2\sqrt2xy+4\sqrt 2yz-8xz\\\\=(-\sqrt2x)^2+y^2+(2\sqrt2z)^2+2(-\sqrt2x)y+2y(2\sqrt2z)+2(2\sqrt2z)(-\sqrt2x)\\\\=(-\sqrt2x+y+2\sqrt2z)^2\\\\=(-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).\end{gathered}E=2x2+y2+8z2−22xy+42yz−8xz=(−2x)2+y2+(22z)2+2(−2x)y+2y(22z)+2(22z)(−2x)=(−2x+y+22z)2=(−2x+y+22z)(−2x+y+22z).Thus, the answer is (-\sqrt2x+y+2\sqrt2z)(-\sqrt2x+y+2\sqrt2z).(−2x+y+22z)(−2x+y+22z).

Similar questions