factorise: (2x+3)^2-5(2x+3)
Answers
Question:
Factorise: (2x + 3)² - 5(2x + 3)
Answer:
4x² + 2x - 6 or 2(2x² + x - 3)
Step-by-step explanation:
We need to find out the factors of (2x + 3)² - 5(2x +3). At first solve the brackets.
→ (2x + 3)² - 5(2x + 3)
Used identity: (a + b)² = a² + b² + 2ab
→ (2x)² + (3)² + 2(2x)(3) - 5(2x + 3)
→ 4x² + 9 + 12x - 5(2x + 3)
→ 4x² + 12x + 9 - 10x - 15
→ 4x² + 12x - 10x + 9 - 15
→ 4x² + (12 - 10)x + (9 - 15)
→ 4x² + 2x - 6
Take 2 as common
→ 2(2x² + x - 3)
From the given question the correct answer is:
the factors of (2x + 3)² - 5(2x +3) is 4x² + 2x - 6 or 2(2x² + x - 3)
Given:
(2x+3)²-5(2x+3)
To find:
the factors of (2x + 3)² - 5(2x +3)
Concept Used:
(a + b)² = a² + b² + 2ab
Solution:
we have to find the factors of (2x + 3)² - 5(2x + 3)
So, we will Use the Formula
(a + b)² = a² + b² + 2ab
Now,
= (2x)² + (3)² + 2(2x)(3) - 5(2x + 3)
=4x² + 9 + 12x - 5(2x + 3)
= 4x² + 12x + 9 - 10x - 15
= 4x² + 12x - 10x + 9 - 15
= 4x² + (12 - 10)x + (9 - 15)
= 4x² + 2x - 6
Take 2 as common
= 2(2x² + x - 3)
Hence , the factors of (2x + 3)² - 5(2x +3) is 4x² + 2x - 6 or 2(2x² + x - 3)