Math, asked by nandinis40, 2 days ago

factorise: (2x+3)^2-5(2x+3)​

Answers

Answered by Dalfon
41

Question:

Factorise: (2x + 3)² - 5(2x + 3)

Answer:

4x² + 2x - 6 or 2(2x² + x - 3)

Step-by-step explanation:

We need to find out the factors of (2x + 3)² - 5(2x +3). At first solve the brackets.

→ (2x + 3)² - 5(2x + 3)

Used identity: (a + b)² = a² + b² + 2ab

→ (2x)² + (3)² + 2(2x)(3) - 5(2x + 3)

→ 4x² + 9 + 12x - 5(2x + 3)

→ 4x² + 12x + 9 - 10x - 15

→ 4x² + 12x - 10x + 9 - 15

→ 4x² + (12 - 10)x + (9 - 15)

→ 4x² + 2x - 6

Take 2 as common

→ 2(2x² + x - 3)

Answered by masura8080
3

From the given question the correct answer is:

the factors of (2x + 3)² - 5(2x +3) is 4x² + 2x - 6   or   2(2x² + x - 3)

Given:

(2x+3)²-5(2x+3)​

To find:

the factors of (2x + 3)² - 5(2x +3)

Concept Used:

(a + b)² = a² + b² + 2ab

Solution:

we have to find the factors of (2x + 3)² - 5(2x + 3)

So, we will Use the Formula

(a + b)² = a² + b² + 2ab

Now,

= (2x)² + (3)² + 2(2x)(3) - 5(2x + 3)

=4x² + 9 + 12x - 5(2x + 3)

= 4x² + 12x + 9 - 10x - 15

= 4x² + 12x - 10x + 9 - 15

= 4x² + (12 - 10)x + (9 - 15)

= 4x² + 2x - 6

Take 2 as common

= 2(2x² + x - 3)

Hence , the factors of (2x + 3)² - 5(2x +3) is 4x² + 2x - 6   or   2(2x² + x - 3)

Similar questions