Math, asked by ItsShizuka01, 7 months ago

Factorise 2x^3 - 5x^2 - 19x + 4​

Answers

Answered by Aɾꜱɦ
1

Step-by-step explanation:

Answer:

\huge\underline\textsf{Question:- }

\boxed{\sf2x ^{3}  - 5x {}^{2}  - 19x + 42}

\huge\underline\textsf{Explantion:- }

\leadsto\sf\red{2x {}^{3}  - 4x {}^{2}  - x {}^{2}  + 2x - 21x + 42}

\leadsto\sf\orange{2x {}^{2} (x - 2) - x(x - 2) - 21(x - 2)}

\leadsto\sf\purple{(x - 2)(2x {}^{2}  - x - 2)}

\leadsto\sf\blue{(x - 2)(2x {}^{2}  + 6x - 7x - 21)}

\leadsto\sf\pink{(x - 2)(2x {}^{2}  + 6x - 7x - 21)}

\leadsto\sf\orange{(x - 2)[(2x(x + 3) - 7(x + 3)]}

\leadsto\sf\red{(x - 2)(2x - 7)(x + 3)}

\large\underline\textsf{\green{Ans.(x - 2)(2x - 7)(x + 3)} }

Answered by Anonymous
0

\leadsto\sf\orange{2x {}^{2} (x - 2) - x(x - 2) - 21(x - 2)} \\  \\ </p><p></p><p>\leadsto\sf\purple{(x - 2)(2x {}^{2} - x - 2)} \\  \\ </p><p></p><p>\leadsto\sf\blue{(x - 2)(2x {}^{2} + 6x - 7x - 21)} \\  \\ </p><p></p><p>\leadsto\sf\pink{(x - 2)(2x {}^{2} + 6x - 7x - 21)} \\  \\ </p><p>\leadsto\sf\orange{(x - 2)[(2x(x + 3) - 7(x + 3)]} \\  \\ </p><p></p><p>\leadsto\sf\red{(x - 2)(2x - 7)(x + 3)} \\  \\ </p><p>\large\underline\textsf{\green{Ans.(x - 2)(2x - 7)(x + 3)} }

Similar questions