Math, asked by Anonymous, 9 months ago

Factorise 2x^3 - 5x^2 + 19x - 42

Answers

Answered by MoonGurl01
3

ANSWER:

2 {x}^{3}  - 5 {x}^{2}  - 19x + 42

2 {x}^{3}  - 4 {x}^{2}  -  {x}^{2}  + 2x - 21x + 42

2 {x}^{2} (x - 2) - x (x - 2)  - 21(x - 2)

(x - 2)(2 {x}^{2}  - x - 21)

(x - 2)(2 {x}^{2}   + 6 x  - 7x- 21)

(x - 2){(2x(x + 3) - 7(x + 3) )}

(x - 2)(2x - 7)(x + 3)

Thanks!

Answered by kush193874
3

Answer:

Answer:

factors of 42 ----> ±1, ±2, ±3, ±6, ±7

f(1) = 2(1) {}^{3} - 5(1) {}^{2}   - 19(1) + 42 \\  \\  = 2 - 5 - 19 + 42  ≠ 0

f( - 1) = 2( - 1) {}^{3}  - 5( -1 ) - 19( - ) + 42 \\  \\  =  - 3 - 5 + 19 + 42 ≠ 0

f( - 2) = 2( - 2) {}^{3}  - 5( - 2) {}^{2}  - 19( - 12) + 42 \\  \\  =  - 16 - 20 + 19 + 42  \\  \\  ≠ 0

f(2) = 2(2) {}^{3}  - 5(2) {}^{2}  - 19(2) + 42 \\  \\  = 16 - 20 - 38 + 4

x = 2 is zero

Therefore, (x – 2) is factor.

Similar questions