Math, asked by nivita7578, 7 months ago

Factorise 2x^3 - 5x^2 - 19x + 42​

Answers

Answered by Aɾꜱɦ
0

\huge\underline\textsf{Question:- }

\boxed{\sf2x ^{3}  - 5x {}^{2}  - 19x + 42}

\huge\underline\textsf{Explantion:- }

\leadsto\sf\red{2x {}^{3}  - 4x {}^{2}  - x {}^{2}  + 2x - 21x + 42}

\leadsto\sf\orange{2x {}^{2} (x - 2) - x(x - 2) - 21(x - 2)}

\leadsto\sf\purple{(x - 2)(2x {}^{2}  - x - 2)}

\leadsto\sf\blue{(x - 2)(2x {}^{2}  + 6x - 7x - 21)}

\leadsto\sf\pink{(x - 2)(2x {}^{2}  + 6x - 7x - 21)}

\leadsto\sf\orange{(x - 2)[(2x(x + 3) - 7(x + 3)]}

\leadsto\sf\red{(x - 2)(2x - 7)(x + 3)}

\large\underline\textsf{\green{Ans.(x - 2)(2x - 7)(x + 3)} }

Answered by AKStark
0

Answer:

 {2x}^{3}  - 5 {x}^{2}  - 19x + 42 \\  \\  = 2 {x}^{3}  - 4 {x}^{2}  -  {x}^{2}  + 2x - 21x + 42 \\  \\  = 2 {x}^{2} (x - 2) - x(x - 2) - 21(x - 2)  \\  \\  \\  \\  =( x - 2)(2 {x}^{2}  - x - 21) \\  \\  = (x - 2)(2 {x}^{2}  + 6x - 7x - 21) \\  \\  = (x - 2)(2x - 7)(x + 3)

Similar questions