Factorise 2x^3 - 5x^2 - 19x + 42
Answers
Answered by
2
Step-by-step explanation:
Answer:
Answered by
1
Explantion:-
\leadsto\sf\red{2x {}^{3} - 4x {}^{2} - x {}^{2} + 2x - 21x + 42}⇝2x
3
−4x
2
−x
2
+2x−21x+42
\leadsto\sf\orange{2x {}^{2} (x - 2) - x(x - 2) - 21(x - 2)}⇝2x
2
(x−2)−x(x−2)−21(x−2)
\leadsto\sf\purple{(x - 2)(2x {}^{2} - x - 2)}⇝(x−2)(2x
2
−x−2)
\leadsto\sf\blue{(x - 2)(2x {}^{2} + 6x - 7x - 21)}⇝(x−2)(2x
2
+6x−7x−21)
\leadsto\sf\pink{(x - 2)(2x {}^{2} + 6x - 7x - 21)}⇝(x−2)(2x
2
+6x−7x−21)
\leadsto\sf\orange{(x - 2)[(2x(x + 3) - 7(x + 3)]}⇝(x−2)[(2x(x+3)−7(x+3)]
\leadsto\sf\red{(x - 2)(2x - 7)(x + 3)}⇝(x−2)(2x−7)(x+3)
\large\underline\textsf{\green{Ans.(x - 2)(2x - 7)(x + 3)} }
Ans.(x - 2)(2x - 7)(x + 3)
Similar questions