Math, asked by kalaprabu91, 1 year ago

factorise 2x cube -9x square + x + 12

Answers

Answered by AryanTennyson
34
ARYAN. PVT......LTD......
Attachments:
Answered by hukam0685
1

All factors of \bf2 {x}^{3}  - 9 {x}^{2}  + x + 12 are \bf \red{(x + 1)(2x - 3)(x - 4) } .

Given:

  • 2 {x}^{3}  - 9 {x}^{2}  + x + 12 \\

To find:

  • Factors of cubic polynomial.

Solution:

Concept/ Theorem to be used:

Factor theorem: if x-a is a factor of polynomial p(x) than p(a)=0.

Step 1:

Find one of the factor of polynomial by hit and trial using factor theorem.

Let p(x)=2 {x}^{3}  - 9 {x}^{2}  + x + 12 \\

Put x=1

p(1) = 2 {(1)}^{3}  - 9 {(1)}^{2}  + 1 + 12 \\

or

p(1) = 2  - 9  + 1 + 12 \\

or

p(1) = 6 \neq0 \\

Thus, (x-1) is not a factor of p(x).

Put x= -1.

p( - 1) = 2 {( - 1)}^{3}  - 9 {( - 1)}^{2}   -  1 + 12 \\

or

p( - 1) =  - 2   - 9  -  1 + 12 \\

or

p( - 1) = 0 \\

Thus,

\bf (x + 1)is a factor of polynomial.

Step 2:

Divide the polynomial by (x+1).

x + 1 \: ) \: 2 {x}^{3}  - 9 {x}^{2}  + x + 12(2 {x}^{2} - 11x + 12 \\ 2 {x}^{3} + 2 {x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\ ( - )( - )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ -  -  -  -  -  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  - 11 {x}^{2}  + x \\  - 11 {x}^{2}  - 11x \\ ( + ) \:  \: ( + ) \\  -  -  -  -  -  \\ 12x + 12 \\ 12x + 12 \\ ( - ) \:  \: ( - ) \\  -  -  -  -  -  \\ 0 \\  -  -  -  -  -   \\

Thus,

Quotient polynomial is another factor of p(x).

Step 3:

Factorise quotient polynomial.

2 {x}^{2} - 11x + 12 \\

or

 = 2 {x}^{2}  - 8x - 3x + 12 \\

or

 = 2x(x - 4) - 3(x - 4) \\

or

 = (2x - 3)(x - 4) \\

Thus,

All factors of polynomial are \bf (x + 1)(2x - 3)(x - 4) \\ .

Learn more:

1) X3-7x-6. Factorise the polynomial

https://brainly.in/question/3903636

2) factorise the cubic polynomial Y3-6y2+11y-6

https://brainly.in/question/3944246

Similar questions