FACTORISE(2x-y)^3+(y-3z)^3 +(3z-2x)^3
Answers
Answered by
71
if a+b+c=0 then
a^3 +b^3 +c3 = 3abc
here a = 2x-y
b=y-3z
c= 3z-2x
a+b+c = 2x-y+y-3z+3z-2x
=0
therefore
(2x-y)^3+(y-3z)^3+(3z-2x)^3= 3abc
=3*(2x-y)(y-3z)(3z-2x)
a^3 +b^3 +c3 = 3abc
here a = 2x-y
b=y-3z
c= 3z-2x
a+b+c = 2x-y+y-3z+3z-2x
=0
therefore
(2x-y)^3+(y-3z)^3+(3z-2x)^3= 3abc
=3*(2x-y)(y-3z)(3z-2x)
mysticd:
ur welcome
Answered by
22
This is of the form a cube + b cube + c cube where a+b+c =0
If a+b+c =0
a cube + b cubed + c cubed = 3abc
(2x-y)^3 + (y-3z)^3 + (3z-2x)^3 = 3(3z)(y)(2x)
=18xyz
If a+b+c =0
a cube + b cubed + c cubed = 3abc
(2x-y)^3 + (y-3z)^3 + (3z-2x)^3 = 3(3z)(y)(2x)
=18xyz
Similar questions