Factorise : 2x3 - 3x2 – 17x + 30.
Answers
Answer :
- 2x³ - 3x² - 17x + 30 = (x - 2) (x + 3) (2x - 5)
Given :
- 2x³ - 3x² - 17x + 30
Solution :
Method (1) :
➞ 2x³ - 3x² - 17x + 30
➞ 2x³ - 4x² + x² - 2x - 15x + 30
➞ 2x²(x - 2) + x(x - 2) - 15(x - 2)
➞ (x - 2) (2x² + x - 15)
➞ (x - 2) (2x² + 6x - 5x - 15)
➞ (x - 2) [2x (x + 3) - 5 (x + 3)]
➞ (x - 2) (x + 3) (2x - 5)
Hence
2x³ - 3x² - 17x + 30 = (x - 2) (x + 3) (2x - 5)
Method (2) :
➞ 2x³ - 3x² - 17x + 30
we know that x = 2 is a zero of polynomial so,
➞ p(2) = 2(2)³ - 3(2)² - 17(2) + 30
➞ 2(8) - 3(4) - 34 + 30
➞ 16 - 12 - 34 + 30
➞ 46 - 46
➞ 0
so, x - 2 is a factor of p(x)
Now, polynomial is divisible by x - 2 we Get,
➞ 2x³ - 3x² - 17x + 30 ÷ x - 2
➞ 2x² + x - 15
Then,
➞ 2x³ - 3x² - 17x + 30 = (x - 2) (2x² + x - 15)
➞ (x - 2) (2x² + 6x - 5x - 15)
➞ (x - 2) [2x(x + 3) - 5(x + 3)]
➞ (x - 2) (2x - 5) (x + 3)
2x³ - 3x² - 17x + 30 = (x - 2) (x + 3) (2x - 5)