Math, asked by krishnabaisala10, 1 year ago

Factorise 2x⁴+x³-14x²-19x-6

Answers

Answered by DilHacker
6

2x⁴+x³-14x²-19x-6

Putting x=3

p(3)=2(3)⁴+(3)³-14(3)²-19(3)-6

=>0

(x-3) is a factor

__________________

Dividing 2x⁴+x³-14x²-19x-6 by x-3

x-3) 2x⁴+x³-14x²-19x-6( 2x³+7x²+7x+2

-2x⁴+6x³

______

7x³-14x²

-7x³+21x²

_______

7x²-19x

-7x²+21x

_______

2x-6

-2x+6

_______

00

=>2x³+7x²+7x+2

≈≈≈×≈≈≈≈≈×

2x⁴+x³-14x²-19x-6

=>(x-3)(2x³+7x²+7x+2)

=>(x-3){2(x³+1)+7x(x+1)}

=>(x-3)(2+7x)(x³+x+2)

Answered by Anonymous
26

\huge\tt\green{\underline{\underline{Solution:}}}

\sf\underline{Let\:the\:given\:polynomial\:be\:denoted\:by\:p(x),\:then}

\sf{p(x)}=\sf{2x^4+x^3-14x^2-19x-6}

Since -6 is the constant term in p(x), therefore , the factors are \underline{+}1, \underline{+}2, \underline{+}3, \underline{+}<strong>6</strong>

\sf\underline{If\:we\:substitute\:x=-2\:in\:p(x),\:then}

\sf{p(-2)=\:2(-2)^4+(-2)^3-14(-2)^2-19(-2)-6}

\sf{=32-8-56+38-6}

\sf{=(32+38)+(-8-56-6)}

\sf{=70-70}

\sf{=0}

\implies\sf{(x+2)\:is\:a\:factor\:of\:p(x)}

\sf\underline{If\:we\:substitute\:x=-3\:in\:p(x),\:then}

\sf{p(3)=\:2(3)^4+(3)^3-14(3)^2-19(3)-6}

\sf{=162+27-14(9)-57-6}

\sf{=189-189}

\sf{=0}

\implies\sf{(x-3)\:is\:a\:factor\:of\:p(x)}

As (x+2) and (x-3) are factors of p(x), therefore g(x) = (x+2)(x-3) = - x - 6 is a factor of p(x). Let divide p(x) by g (x)to obtain the quotient as a quadratic in x and then factorise the quotient.

So , when you divide p(x) by g(x) you will get 2x² + 3x + 1.

•°• 2x⁴ + x³ - 14x² - 19x - 6 = (x² -x- 6)(2x⁴ + 3x + 1)

\sf{(x+2)(x-3)[2x^2+3x+x+1]}

\sf{(x+2)(x-3)[2x(x+1)+1(x+1)]}

\sf\underline{(x+2)(x-3)(x+1)(2x+1)}

Similar questions