Math, asked by krishna72238, 4 months ago

factorise ׳–23ײ+142×–120​

Answers

Answered by Anonymous
101

 \large \underline \bold{Solution}:-

\: \: \: \: \: \sf{x^{3} - 23x^{2} + 142x - 120}

\sf{x^{3} - 22x^{2} - x^{2} + 120x + 22x - 120}

\sf{x^{3} - 22x^{2} + 120x - x^{2} + 22x - 120}

\sf{(x^{3} - 22x^{2} + 120x) - (x^{2} - 22x + 120)}

\sf{x(x^{2} - 22x + 120) - 1(x^{2} - 22x + 120)}

\: \: \: \sf{(x - 1)(x^{2} - 22x + 120)}

 \small \underline \bold{For \: quadratic \: eq.-}

\: \: \: \: \: \sf{x^{2} - 22x + 120}

\sf{On \: Comparing \: it \: from \: the \: standard \: quadratic \: eq.-}

\: \: \: \: \:  \small \bold{ax^{2} + bx + c = 0}

\sf{Here \: ,}

\: \: \: \: \: \: \: \: \: \sf{a = 1}

\: \: \: \: \: \: \: \: \: \sf{b = -22}

\: \: \: \: \: \: \: \: \: \sf{c = 120}

\sf{On \: Using \: the \: quadratic \: Formula \: -}

\: \: \: \sf\boxed{\sf\blue{x =\dfrac{-b ± \sqrt{b^{2} - 4ac}}{2a}}}

\: \: \: \sf{x = \dfrac{22 ± \sqrt{(-22)^{2} - 4(1)(120)}}{2(1)}}

\: \: \: \sf{x = \dfrac{22 ± \sqrt{484 - 480}}{2}}

\: \: \: \sf{x = \dfrac{22 ± \sqrt{4}}{2}}

\: \: \: \sf{x = \dfrac{22 ± 2}{2}}

\: \: \: \sf{x = \dfrac{22 + 2}{2} \: , \: \dfrac{22 - 2}{2}}

\: \: \: \sf{x = \dfrac{24}{2} \: , \: \dfrac{20}{2}}

\: \: \: \sf{x = 12 \: , \: 10}

\sf{means \: ,}

\sf{x^{2} - 22x + 120 = (x - 12)(x - 10)}

\sf{Thus \: ,}

\: \: \: \sf{x^{3} - 23x^{2} + 142x - 120}

\sf\red{= (x - 1)(x - 10)(x - 12)}

Similar questions