Math, asked by ANTMAN22, 4 hours ago

Factorise:
30-17(x-y)-21(x-y)^2

Do it with full with step by step explanation

Highly qualified answer needed​

Answers

Answered by sonigupta0025
0

Answer:

30−17(x−y)−21(x−y)2

Distribute:

=30+(−17)(x)+(−17)(−y)+−21x2+42xy+−21y2

=30+−17x+17y+−21x2+42xy+−21y

Answer:

=−21x2+42xy−21y2−17x+17y+30

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:30 - 17(x - y) - 21 {(x - y)}^{2}

Let assume that

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: x - y = z \:  \: }}} \\

So, above expression can be rewritten as

\rm \:  =  \: 30 - 17z - 21 {z}^{2}

\rm \:  =  \:  - ( {21z}^{2} + 17z - 30)

Niw, we use the concept of Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to find numbers p and q such that p + q = b and pq = ac.

After finding p and q, we split the middle term in the quadratic expression as px + qx and get the required factors after regrouping the terms.

So, here we have to find p and q in such a way that

\rm :\longmapsto\:p + q = 17

and

\rm :\longmapsto\:pq =  - 630

So, 630 can be rewritten in factor form as

\rm :\longmapsto\:pq =  -7 \times 3 \times 3 \times 2 \times 5

\rm :\longmapsto\:pq =  -(7 \times 5) \times( 3 \times 3 \times 2)

\rm :\longmapsto\:pq =  -(35) \times(18)

So,

\rm\implies \:p = 35 \:  \: and \:  \: q =  - 18

So, given expression can be rewritten as

\rm \:  =  \:  - (21 {z}^{2} + 35z - 18z - 30)

\rm \:  =  \:  - [7z(3z + 5) - 6(3z + 5)]

\rm \:  =  \:  - [(3z + 5)(7z - 6)]

Now substituting the value of z = x + y, we get

\rm \:  =  \:  - [3(x + y) + 5][7(x + y)  -  6]

\rm \:  =  \:  - [3x + 3y + 5][7x + 7y -  6]

Hence,

\bf :\longmapsto\:30 - 17(x - y) - 30 {(x - y)}^{2} \\  \\ \bf \:  =  \:  - [3x + 3y + 5][7x + 7y -  6] \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions