Factorise 32-3(x-4)²
Answers
hey mate plz mark brainliest plzzz
32 - 2 (x - 4)^2
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},using the identity (a + b)(a - b) = a^2 - b^2
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},using the identity (a + b)(a - b) = a^2 - b^2= 2 (4 - x + 4) (4 + x - 4)
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},using the identity (a + b)(a - b) = a^2 - b^2= 2 (4 - x + 4) (4 + x - 4)= 2 (8 - x) (x)
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},using the identity (a + b)(a - b) = a^2 - b^2= 2 (4 - x + 4) (4 + x - 4)= 2 (8 - x) (x)= 2 x (8 - x),
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},using the identity (a + b)(a - b) = a^2 - b^2= 2 (4 - x + 4) (4 + x - 4)= 2 (8 - x) (x)= 2 x (8 - x),which is the required factorization.
32 - 2 (x - 4)^2= 2 {16 - (x - 4)^2}= 2 {4^2 - (x - 4)^2}= 2 {4 - (x - 4)} {4 + (x - 4)},using the identity (a + b)(a - b) = a^2 - b^2= 2 (4 - x + 4) (4 + x - 4)= 2 (8 - x) (x)= 2 x (8 - x),which is the required factorization.#MarkAsBrainliest
Answer:
232
Step-by-step explanation:
32-3(×-4)×2 = 32-3=29=29×4=116×2=232