Math, asked by paprisharma79, 11 hours ago

factorise (3a+b)² - (a-2b)²​

Answers

Answered by amitnrw
1

Given  : (3a+b)² - (a-2b)²​

To Find : Factorize

Solution:

(3a+b)² - (a-2b)²​

x² - y² = (x + y)(x - y)

x = (3a + b)

y = ( a - 2b)

(3a+b)² - (a-2b)²​

= ( (3a + b) + (a - 2b) ) ( (3a + b) - (a - 2b) )

= (3a + b + a - 2b)(3a + b - a + 2b)

= (3a + a + b - 2b)(3a - a + b + 2b)

= ( 4a - b)(2a + 3b)

(3a+b)² - (a-2b)²​ = ( 4a - b)(2a + 3b)

Learn More:

find the value of x by factorization, x2-8x+1280=0 - Brainly.in

brainly.in/question/7343350

Using factor theorem, factorize each of the following polynomial ...

brainly.in/question/15904651

Factorise: 1. a3 – 4a2 + 12 – 3a 2. a3x – x4 + a2x2

brainly.in/question/13142738

Answered by AestheticDude
9

Answer :-

  •  \rm  \bf(3a + b) ^{2}  - (a - 2b) ^{2}  = (4a - b)(2a + 3b)

Question :-

 \rm \: Factorise (3a + b)^{2}  -  {(a - 2b)}^{2}

______________________

Formula :-

 \rm \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

______________________

Let :-

  • Let A be ( 3a + b )
  • Let B be ( a - 2b )

______________________

Solution :-

 \rm \:(3a + b)^{2}  -  {(a - 2b)}^{2}

Applying the formula ,

 \rm \implies[(3a + b) + (a - 2b)] \:  \: [(3a + b) - (a - 2b)]

opening the brackets ,

 \rm \implies(3a + b+ a - 2b) \:  \: (3a + b - a  + 2b)]

Making the variables to their same side,

 \rm \implies(3a + a+ b - 2b) \:  \: (3a  -  a  + b + 2b)]

  \rm \implies \bf \: (4a -b)(2a + 3b)

 \sf \therefore \bf(3a + b) ^{2}  - (a - 2b) ^{2}  = (4a - b)(2a + 3b)

______________________

Similar questions